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ABSTRACT

Learned image compression has demonstrated superior
rate-distortion performance compared to traditional standards
for over the past years. However, despite these advancements,
legacy formats like JPEG remain dominant. The primary bar-
rier to adoption is not quality, but computational complex-
ity. Real-time applications demand low decoding latencies
for smooth user experiences, whereas current learned mod-
els often require significantly longer processing times, ren-
dering them impractical for standard hardware. We identify
that the majority of this computational burden lies in the ini-
tial high-resolution convolutional layers that transform pix-
els into feature maps. To address this, we propose an inno-
vative hierarchical feature extraction transform. By utilizing
fewer channels for high spatial resolution inputs and increas-
ing channel depth only as spatial dimensions are reduced in
the latent space, we significantly cut computational load with-
out sacrificing bit rate reduction efficiency. This strategy re-
duces forward pass complexity from 1256 kMAC/Pixel to just
270 kMAC/Pixel. This architectural shift offers an immediate
solution for deploying efficient learned compression on exist-
ing devices without relying on future hardware acceleration.

1. INTRODUCTION

It has been almost a decade since the introduction of end-to-
end learned image compression [1]. Since then, the field has
witnessed substantial improvements in coding efficiency, con-
sistently outperforming traditional methods [2]. Yet, despite
being over 25 years old, JPEG, and its successors like JPEG
2000, remains the dominant standard in the industry. This
raises a critical question: if learned image compression of-
fers significantly better improvement in visual quality and file
size, why has there been almost no widespread adaptation?
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Fig. 1: The compression efficiency vs complexity of different
learned image compression models. The complexity is mea-
sured in terms of (kMAC/Pixel) using BD-PSNR.

The answer is simple: complexity. While the rate-
distortion performance of learned models is impressive, the
computational cost required to achieve it is often prohibitive.
In practical applications, user experience is paramount; for
example, when scrolling through a gallery app, an image
must be decoded and displayed in less than a second. If a
model takes seconds or even minutes to open an image, it is
unusable regardless of the compression quality.

Furthermore, we cannot simply rely on the potential ar-
rival of specialized hardware accelerators. To ensure learned
compression is viable today, even on older devices, we must
address the architecture itself. We must ask: where exactly
does the complexity lie?

In a standard Convolutional Neural Network (CNN) based
codec, the architecture typically consists of an encoder, quan-
tization, entropy coding, and a decoder. An analysis of the
computational flow reveals that the complexity is not evenly
distributed. The entropy coding and operations within the la-
tent space (the ”hybrid” encoder/decoder stages) are relatively
efficient because they operate on compressed, low-resolution



data. The true bottleneck lies in the first few layers of the en-
coder and the final layers of the decoder. These layers are re-
sponsible for converting high-resolution raw images into so-
phisticated feature maps. Standard architectures often main-
tain a fixed number of channels throughout these layers, re-
sulting in massive computational overhead at high spatial res-
olutions.

To solve this, we propose a hierarchical feature extrac-
tion approach designed to optimize efficiency where it mat-
ters most. By restructuring the network to use fewer channels
for high-resolution input layers and reserving higher channel
counts for the lower-resolution latent space, we drastically
reduce the operations required. Our contributions are as fol-
lows:

• Efficient Hierarchical Architecture: We introduce a
novel hierarchical feature extraction method that maps
images from the pixel domain to the latent domain.
This approach assigns fewer feature maps to larger spa-
tial sizes and deeper feature representations to smaller
sizes.

• Drastic Complexity Reduction: By targeting the
heavy initial layers, we reduce the forward pass com-
plexity from 1256 kMAC/Pixel to only 270 kMAC/
Pixel, making the model viable for devices without
specialized hardware accelerators.

• Competitive Performance: We utilize a hyper-
autoencoder with a multi-reference entropy model, en-
suring that despite the reduction in complexity, the
model maintains state-of-the-art compression perfor-
mance. The model is trained on a large dataset span-
ning a significant portion of the image space manifold
to ensure generalization.

• Open Source Release: We release our model with
open source weights, enabling widespread adoption
and reproducibility. Future quantized versions and
practical applications for desktop and mobile devices
are planned, making learned image compression acces-
sible for real-world deployment across diverse hard-
ware platforms. (available at: loc-lic Webpage)

2. RELATED WORKS

Traditional image compression algorithms, such as JPEG
2000, often lack the flexibility of non-linear mapping to
input data through a learning process. To address these lim-
itations, a novel learned image compression method using
autoencoders has been developed. This approach involves
training an autoencoder on large datasets of images or videos
[2, 3, 4, 5].

The key advantage of the learned image codec lies in the
autoencoder’s capacity to map images into a low-entropy,
high-dimensional latent space, and subsequently reconstruct
them back into the image space in a lossy manner [1]. The
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Fig. 2: Overall view of the proposed architecture with hierar-
chical feature encoder and decoder.

learned image codec network architecture is typically com-
posed of analysis and synthesis transform functions, which
can be implemented using pure convolutional layers with
a fixed number of channels N [6]. Some architectures in-
corporate residual connections with convolutional layers as
the base model [7], while others utilize transformer-based
layers [8] or combine attention mechanisms with convolu-
tional layers for enhanced performance [9]. The goal is for
the reconstructed image x̂ to closely resemble the original
image x while minimizing the bit-rate R used for the latent
representation. Generally, higher entropy results in lower
distortion and vice versa. Therefore, optimization aims to
balance distortion D(x, x̂) with entropy measured in bitrate
R (bits per pixel). A Lagrangian multiplier is employed to
manage this trade-off between distortion and target bit-rate
[9]. Quantization plays a critical role in bitrate reduction
but introduces non-differentiability, hindering its direct in-
tegration with gradient-based optimization. To address this,
continuous relaxations of the quantization operator, such as
the straight-through estimator (STE), are widely adopted to
enable differentiable approximations during training. An
alternative strategy involves replacing deterministic quanti-
zation with stochastic rounding, which introduces non-biased
gradients and has proven effective in recent compression
frameworks [10, 1]. Both approaches circumvent the dis-
continuity in backpropagation while preserving quantization
benefits. Stochastic rounding can be easily implemented by
adding uniform noise to the unquantized values. A hybrid
approach that combines both straight-through estimation and
stochastic rounding also exists [2]. Utilizing context informa-
tion allows for more efficient data compression by reducing
the bit-rate necessary for encoding. Context-based entropy
models exploit surrounding or neighboring information to
better predict and compress the current data. This strategy
is particularly important in neural image compression, as it
enables accurate bit-rate estimation while minimizing redun-
dancy.

To enhance compression efficiency, various context-based
entropy models have been proposed. An autoregressive model

https://ayman-ameen.github.io/loc-lic_page/


was introduced to condition each pixel on previously decoded
pixels for more effective context modeling [10]. Another ap-
proach is the checkerboard convolution, which divides the la-
tent representation into anchor and non-anchor parts, using
the anchor part to extract context for the non-anchor part [9].
Furthermore, channel-wise context models [11], and channel-
wise models with unevenly grouped contexts [4], have been
developed to exploit redundancy between channels. Recently,
an attention-based architecture has been proposed to capture
a diverse range of correlations within the latent representation
[3, 2].

Another promising approach for learned image compres-
sion involves using an overfitted neural network to represent
image data as a continuous neural function instead of discrete
pixel values. This neural function can be evaluated to recon-
struct the RGB values of image pixels. Various efforts have
been made to represent entire datasets, such as MNIST, using
neural functions for resolution-agnostic representations [12].
A significant advantage of modeling images as neural func-
tions is their resolution agnosticism: images are represented
continuously and can be evaluated at any desired resolution.
This approach assumes that image signals are inherently con-
tinuous.

Another approach for learned image compression in-
volves using an overfitted neural network to represent image
data as a continuous neural function instead of discrete pixel
values. This neural function can be evaluated to reconstruct
the RGB values of image pixels. COOL-CHIC [13] in-
troduced an advanced overfitted learned image codec with
reduced decoding complexity and improved compression ef-
ficiency. Recently, CLRIC [14] introduced a hybrid approach
that utilizes an overfitted learnable function to compress the
latent representation from image autoencoders, showing very
promising results.

Fig. 3: The compression efficiency vs complexity of different
learned image compression models. The complexity is mea-
sured in terms of (kMAC/Pixel) using BD-SSIM.
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Fig. 4: Comparison of forward complexity between our ap-
proach and various learned image compression models

3. METHOD

Recent advancements in learned image compression have
successfully minimized the rate-distortion Lagrangian L =
λD +R. However, the practical deployment of these models
is often hindered by the computational cost of the analysis
and synthesis transforms. We formulate the deployment chal-
lenge as a constrained optimization problem where we seek
to minimize L subject to a complexity budget K:
min
θ,ϕ

Ex∼px
[− log2 pŷ(ŷ) + λd(x, x̂)] s.t. C(gahf

, gshf
) ≤ K
(1)

where C(·) denotes the operational complexity (e.g., multiply-
accumulate operations per pixel). Standard architectures of-
ten incur high C by maintaining high-dimensional feature
maps throughout the network. In this paper, we propose a
hierarchical feature extraction model designed to satisfy strict
complexity constraints. While hierarchical representations
have been utilized in generative synthesis and segmentation
[15, 16], our approach optimizes the trade-off between the
channel dimension C and spatial resolution H × W to min-
imize MACs without sacrificing the expressiveness of the
latent space.

3.1. Architecture Overview

The proposed architecture, illustrated in Figure 2, aligns with
the variational autoencoder framework used in mainstream
learned image codecs [2, 9]. We define the input image space
as X ⊂ R3×H×W and the latent space as Y . The system com-
prises a Hierarchical Feature Encoder acting as a non-linear
analysis transform gahf

(·; θ) : X → Y , parameterized by θ.
To enable entropy coding, the continuous latent vector

y is discretized via a quantization function Q : R → Z. To
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Fig. 5: Assessments and comparisons of image compression models using different metrics and datasets. (a) PSNR scores
on the Kodak dataset, (b) MS-SSIM scores on the Kodak dataset, and (c) PSNR scores on the CLIC Professional Valid 2020
dataset.

Fig. 6: Our novel approach performance compared to MLIC++ and LIC-TCM on image num. 3 from
the CLIC Professional Valid 2020 dataset.

allow for end-to-end differentiability during training, we ap-
proximate quantization by adding uniform noise U(− 1

2 ,
1
2 )

or using straight-through estimation. The entropy model
utilizes a hyper-prior structure derived from MLIC++ [2],
estimating the distribution pŷ(ŷ|ẑ) where ẑ is side informa-
tion. This allows for the estimation of the bit-rate R(ŷ) =
−
∑

i log2 pŷi
(ŷi|ẑ).

The reconstruction is generated by the synthesis transform
gshf

(·;ϕ) : Y → X , parameterized by ϕ. The complete for-
ward pass is mathematically formulated as:

y = gahf
(x; θ), ŷ = Q(y), x̂ = gshf

(ŷ;ϕ) (2)
where x ∈ X is the input image, y is the unquantized

latent representation, and x̂ denotes the reconstructed image.
The parameters θ and ϕ are optimized jointly to minimize the
rate-distortion objective.

3.2. Hierarchical Feature Transform

The hierarchical feature architecture [17, 18] is defined as a
composition of layer-wise transformations that map the input
x of dimensions H × W into a sequence of feature tensors
with progressively increasing channel depth and decreasing
spatial resolution. Let Fi denote the feature representation at

layer i, where F0 = x. We define the transformation function
for the i-th layer as Ti : RCi×Hi×Wi → RCi+1×Hi+1×Wi+1 .

The encoder gahf
is constructed such that for the initial

layer, the mapping produces basic features with N channels
while applying a spatial stride of 2. For subsequent layers
i > 0, the transformation adheres to an inverse proportional-
ity between spatial resolution and channel capacity. Specifi-
cally, the mapping Ti enforces:

Ci+1 = 2Ci, Hi+1 =
Hi

2
, Wi+1 =

Wi

2
(3)

Consequently, the output of layer i+1 is a function of the
input from layer i, expressed as:

Fi+1 = Ti(Fi) s.t. Fi+1 ∈ R2Ci×
Hi
2 ×Wi

2 (4)
This design explicitly constrains the computational complex-
ity. Assuming a convolutional operation at layer i with kernel
size K × K, the computational cost Ωi in MACs is propor-
tional to:

Ωi ∝ Hi+1Wi+1 · Ci · Ci+1 ·K2 (5)
By reducing the spatial dimensions Hi,Wi geometrically

while increasing channels Ci arithmetically, we ensure that
the total complexity

∑
i Ωi remains bounded, effectively

shifting the computational load from high-resolution spatial



Fig. 7: Comparison between our approach and different models on image num. 7 from the Kodak
dataset.

processing to high-dimensional semantic feature processing.

4. EXPERIMENTS

We train our models on 256× 256 randomly cropped images
from a custom dataset containing around 106. Our custom
dataset images is selected from ImageNet [19] COCO 2017
[20] Vimeo90K [21], and DIV2K [22]. Our objective func-
tion consists of two terms. The first one is the mean square
error between the original image and the model’s output. The
second term is the bitrate with a Lagrange multiplier to con-
trol the trade-off between the two terms and achieve the target
bitrate.

To assess and compare the performance and general-
ization capability of our model, we conducted validation
experiments on two datasets and evaluated its performance
against various models. The first dataset utilized is the Kodak
dataset, a widely adopted benchmark for validating image
compression models comprising 24 images. Additionally,
we selected the CLIC Professional Valid 2020 dataset, which
contains 41 high-resolution images, making it well-suited
for evaluating compression in the current era of digital high-
resolution imagery. We compared our approach against sev-
eral learned image compression models, including MLIC++
[2], LIC-TCM [7], ELIC [4], JPEG AI [23] (JPEG-AI-high
variant) and two variations of Balle’s model, Factorized and
Hyperprior [1], two variations of Minnen’s model, Mean, and
Hyperprior [10], as well as Cheng’s Anchor model [9], were
included in the comparison.
Quantitative analysis We evaluated the complexity of our
model in terms of forward operations measured as kMAC/
Pixel, comparing this against other models to assess its effi-
ciency. Using Cheng [9] as a baseline, illustrated in Figure
1, our model exhibited a significantly reduced complexity of
approximately 270 kMAC/Pixel while maintaining superior
performance over the Cheng model, which has a complex-
ity of 933 kMAC/Pixel. Moreover, our model outperformed
those by Balle and Minnen at both lower and higher bit-rates;
these models utilize two different approaches corresponding
to varying levels of complexity. An average model complex-
ity was considered for comparison purposes. On the other
hand, MLIC++ proved more efficient with a complexity of

around 1256 kMAC/Pixel that we could not surpass. Addi-
tionally, our model achieves competitive results in terms of
the Structural Similarity Index Measure (SSIM) metric, in-
dicating higher values that align with reduced complexity, as
shown in Figure 3. We conducted a comprehensive evaluation
of our approach, specifically focusing on a forward path that
is responsible for the image encoding and decoding phases.
Our analysis, depicted in Figure 4, compares our method to
other advanced learned image compression models. Notably,
our model demonstrated the lowest complexity, outperform-
ing leading models such as MILC++.

We plotted rate-distortion curves for both Peak Signal-
to-Noise Ratio (PSNR) and Multi-Scale Structural Similar-
ity Index Measure (MS-SSIM) using the Kodak and CLIC
Professional Validation 2020 datasets, as illustrated in Fig-
ure 5. Our model exhibits behavior comparable to that of
high-complexity models such as MLIC++ [2] and ELIC,
while maintaining significantly lower complexity. In terms of
PSNR, our model’s performance is shown in Figure 5(a), and
for MS-SSIM, the performance is depicted in Figure 5(b).
Qualitative analysis In our study, we evaluated the visual
performance of our model using two distinct datasets, Ko-
dak and CLIC, as illustrated in Figures 6 and 7. Our findings
indicate that our model achieves a performance comparable
to the state-of-the-art learned image compression model, like
MLIC++ with a marginal increase in the bit rate while main-
taining reduced complexity and preserves competitive perfor-
mance compared to existing models.

5. CONCLUSION

In this study, we introduce an innovative image compression
model with reduced computational complexity, achieving per-
formance comparable to state-of-the-art models. Our method
leverages hierarchical feature extraction transforms to signifi-
cantly lower complexity while effectively maintaining bit rate
reduction. We conducted various comparisons with exist-
ing learned image compression models, focusing on compu-
tational complexity and performance metrics such as PSNR,
and MS-SSIM. Our model demonstrated performance on par
with state of the art models while retaining minimal complex-
ity.
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Kaup, “Variable rate learned wavelet video coding with
temporal layer adaptivity,” in Proceedings IEEE Inter-
national Conference on Image Processing (ICIP), 2025.

[19] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei, “ImageNet: A large-scale hierarchical
image database,” in 2009 IEEE Conference on Com-
puter Vision and Pattern Recognition, 2009-06, pp. 248–
255.

[20] Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir
Bourdev, Ross Girshick, James Hays, Pietro Perona,
Deva Ramanan, C. Lawrence Zitnick, and Piotr Dollár,
“Microsoft COCO: Common Objects in Context,” 2015-
02-21.

[21] Tianfan Xue, Baian Chen, Jiajun Wu, Donglai Wei, and
William T. Freeman, “Video Enhancement with Task-
Oriented Flow,” vol. 127, no. 8, pp. 1106–1125, 2019-
08.

[22] Eirikur Agustsson and Radu Timofte, “NTIRE 2017
Challenge on Single Image Super-Resolution: Dataset
and Study,” in 2017 IEEE Conference on Computer
Vision and Pattern Recognition Workshops (CVPRW),
2017-07, pp. 1122–1131.

[23] “JPEG AI,” https://jpeg.org/jpegai/index.html, 2025.


	 Introduction
	 Related Works
	 Method
	 Architecture Overview
	 Hierarchical Feature Transform

	 Experiments
	 Conclusion
	 References

